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TUK6ULENCE J&) HEAT STRATIFICATIOli*‘“

By H. Schlichting

SUMMARY

In this report the method of small oscillations is used to investi-
gate the stability of a stratified plane laminer flow (x and y are
rectangular coordinates in the plane; x direction = primary flow
Urection, y direction perpendicular upward). The lsminar flow U = U(y)
serving as basis is a “boundary-layerflow” which increases from the
value U = O at the wall to a constant value U = ~ at great wall
distances. Stratification of densities is assumed in the boundary
lsyer (thickness = 5), while outside of the boundary lsyer, in the zone
of constsnt velocity Um, the density is assumed to be constant. The
flow function of a psrtid oscillation of the superposed periodic
disturbancemotion is written as

W(x,y,t) = cp(y)ei(m-~t) =q(Y)eia(x-et)

where u is slways reel end identifies the spatial angular frequency of
the disturbance (k = 2fi/a= wave length of the disturbance); P is, in
generel, complex, and the prefix of the imaginary part of 1.3decides
the stability or instability of the disturbance. The stability investl-,
gation Is a characteristicvslue problem of the iklfferentislequation of
the disturbance

‘u- C)21?’--a2i11 [ 1
‘(U - c)U”q + Kg + L(U - C) -(U - C)Q’ + U’CP

= ‘A(U - c)[Q’’”- 2a2q’1 1
+ a4cp- L(cp’”- a2q’)

for the disturbance amplitude q, with the boundary conditions cp= q’ = O
atthewally=O, and y=OO at great distance from.the wall;

*“Turbulent bei Wdrmeschichtung.” Zeitschrift fiirAngewandte
Mathematik und Mechanik, Band 15, Heft 6, December1935, PP. N-3-333.
Lecture presented at the fourth internationalMechanics Conference held
at Cembridge, England, from July 3 to JuIY.9, 1934.
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5$ ‘~., (Richardsonnuniber)R denotes the Reyuolds number, K = - -
Pdy TJ#

bdp
and L=— —— are nondhnen~ionsl stratification numbers,

P*
&=.m/@

is a llroudenumber. For a specified group of four vslues a, R, K, L,
this equation has only one solution for a particular value of c. The
study is limited to pure resl values of c, that is, to the determination
of the curve of the transition points from stability to instability
(indifference curve) for specified values of K and L in the UR
plane. Stable (K>O, L>O) and unstable stratifications (K< O, L< O)
are investigated. It is found that for constsnt fioude number with
increasing stratification (increasing K) the critical Reynolds number is
greater and the region of unstable disturbsmces in the aR plane smeller
until finally at a critical velue of the stratification quantity K,
which still depends on the fioude number, complete stability of flow
prevails for all disturbance wave lengths and Reynolds numbers.

The calculation is csrried out for the flow past a flat plate, for
which Tollmien had computed the indifference curve for homogeneous flow.

The critical stratification quantity ~ =
/()

&q E2
at which the

pm @w’

turbulence must become zero, ranges fhm 0.0409 to O.O29 for ltroude

%2
4numbers — = O to 5, while Taylor and Goldstein arrived at ek =1/4 ly

8g

a similar calculation in which the fluid friction and the curvature of
the profile had been neglected, and Richardson and Prandtl had
oltained ~ = 1 and ~ = 2, respectively, by rough estimates.

The essentiel premises of the present investigation (plate profile,
stratification of densities in boundary layer only) are fairly well
confirmed by Reichardt’s measurements in the G5ttingen hot-cold air
tunnel, where the upper plate is heated with steam, and the lower plate
cooled with tap water (stable case). The decision, whether a measured
velocity profile was laminar or turbulent was made from oscillographic
records of the voltage fluctuations of a hot wire. The comparison of
the measurements with the present theory indicates a very satisfactory
agreement.

1. INTRODUCTION

On cool summer evenings, when there is a
can occasionally olserve the floating of damp

slight breeze, a person
fog with a very shsrply
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defined boundary over a wet meadow, a sign of the fact that the turbd”ence
of the wind has stopped ccanpletely,’so that,the tir layers slide laminar
over one another without turbulent intermingling. This is due to the
development of a marked temperature difference.as aresultof the evening

‘-c’oolin”g,whXch prevents the warmer end hence specifically lighter upper
layer ficanmlxing with the cooler, heavier air leyers near the ground.

Closely related with it are Richardson’s obse&ations (reference1)
of the influence of the gustiness of the wind which can be regarded as
a measure for the turlnilencestrength on the vertical temperature
difference. He observed that,the gustiness is small when the air is
colder below than above and that it increases when the temperature
difference ap~oaches the unstable adiabatic eqtilibrimn. But,
surprisin@y, the gustiness does not increase much more when the unstable
superadiabatic temperature difference prevails.

Tsylor had made sWlar observations in 1916 (reference 2). From
simultaneous records of temperature and wind velocity at about 40 meters
height above ground for several deys and nights, he found that on the
nights when the nocturnal temperature minimum was very msrked as a
result of strong radiation, the turbulence was completely gone. But on
nights with lesser cooling, such as result from cloudiness, the wind
velocity fluctuations were most as great as during daytime.

The flow of fresh water over salt water without substantial inter-
mingling, as observed in the Kattegat, for instance, belongs to the ssme
group of phenomena. Even the surprising stability of Bjerknes’s polar
fronts, where the cold air masses form a wedge under the werm masses,
is traceable to the stratification (reference 3). Taylor, in 1927, made
a simple experiment by which the stabilizing effect of the stratification
of densities on the turbulence can be shown by means of a salt solution
(reference 4).

Conversely, there is increased twlmlence, and hence a stronger
intermin~ing, as a result of convection motions; and, when following
strong radiation, the lower dr layers are heated more than the upper
layers (reference ~).

Reichardt has conducted experimental investigations on a stratified
flow since 1927, under the Mrection of Professor Prandtl. A stream of
air in a horizontal channel is blown between a plate cooled with water
and heated with steam, whereby the upper, as well as the lower, plate
can be heated (stable or unstable stratification). IX 1927, when these
experiments were still in the initiel stage, Prandtl set up a simple
theorem, in form of an energy consideration (reference 6)j which is
briefly reviewed.
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Assume a flow in horizontal direction, with a stratification.of
densities in perpendicular direction (y-direction),so that the density ,.

decreases continuously upward. During the turbulent mixing motions,
work is then performed by the fact that heavier matter is rdsed and
lighter matter lowered with respect to the lift. The path traversed by
a particle in vertical tirection, before it mixes again with the new
surrounding, is the Prsndtl mixing path 2 (reference 7), and the
difference in lift per unit volume of a particle shifted in the vertical

over the path length 1 is -gig. The work per unit volume of displaced

fluid mass while traveling over the path length Z is accordingly

To identify the quantities participating on the exchange, visualize
a level surface F; on one fraction PI of this area, an upward motion’
with velocity q prevails, and on a fraction 132 a downward motion
with velocity v2, so that the total flow volume in unit the is
F(PIV1 + 132v2). With it, the lifting work due to the stratification of

densities is

L5 =
( )

-F PIV1 + i32v2
2Y+gl ~ (1)

This work must be supplied from the stored energ of the turbulent
mixing motions. This is obtained by the work -ofthe basic flow at the
element, which is given by the product of the apparent turbulent shearing
stress with the displacement velocity. For a lody of base area F and
height 7, in which the afore-mentioned volume is exchanged,”this work

is FTZ
du.

v’ T
is the turbulent shearing stress for which T = pulvf,

according to Reynolds, where U’ and v’ are the turbulent fluctuation
velocities (u = u(y) = mean flow velocity). According to Frandtl,

duu! . z— and, according to the foregoing, V’ = ~lvl + 132v2. Up to a
dv

“

numerical factor K, which is still to be determined, in which the
correlation factor of u’v’ enters, the turhlent shearing stress is
then

....--.—. -, - ,.,.,. ,,, ,, , .,,, ,, .,,.,,,,,, ,,,,,,,,,—1 1 lllm 111111, ,, 1 ,,., ,,11,,, ,,,,,,,,,,,, ■m-m II
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hence the work Lt of the turbulent apparent i%iction

,. -2
Lt =

()(
~Fp22 ‘—”

W )
Plvl + B2V2 (2)

The existence and disappearance of the turbulence as a result of
the stable stratification depends upon which of the two energy amounts
is the greater. If the work of the turbulent apperent friction is
greater (Lt >La), the difference for maintaining the turbulence remains,

but, If the work against the weight difference is greater (La> Lt), the

turbulence must die out. Turbulence is therefore possible on an energy
basis when

or, after abbreviation

d~ 2

()

>-g W

‘“ G 20

For the nondimensional quantity

which serves as
the ‘!Rlchardson

13dP-——
P*

—=@

()

d&
2

v

(3)

basia for all flows with stratification of densities,
nmiber” is introduced, since he was the first to study

stratified flows in 1920 (reference 9). Thus Q = O denotes the
homogeneous fluid. By I&andtl’s energy appraisal.the result is as
follows:

Turbulence, on en enerfg basis, is possible for Q <2K
Turbulence, on an energy basis, is tipossible for G>2K
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Although nothing definite cam he said about the numerical factor ~, it
is suspected that it lies near unity. fiandtl chose ~ = 1 and so
oltained G = 2 as stability liml.t.

Taylor indicated subsequently (reference10) that a factor 2 cancels
out when l?rendtl’sconsiderations are refined, so that Prsndtl’s
stability limit @ = 1 would agree with similar considerations by
Richardson (reference 9). Teylor (reference11) and Goldstein (refer-
ence 12) later continued the theoretical study of flow with stratification
of densities, that is, the stability of a plane lsminer flow with stable
stratification of densities, by the method of mall vibrations. Viscosity
and compressibilitywere disregarded and the velocity profiles were
Umited to those consisting of straight pieces, for reasons of mathe-
matical simplicity. b the differential equation of the disturbance,
only the effects of the stratification of densities on the potential
ener~ (gravity effect) were taken into account, while the inertia effect
of the stratification of densities is neglected. ~The cases in which this
is permitted, and the resulting stiplification in the calculation, will
be discussed later. The results of Taylor’s and Goldstein’s stability
investigations can be represented in the two nondimensionals G
and x/b, A = wave length of disturbance, 5 a characteristic length
of the velocity profile (boundary-layerthickness). For the majority
of cases explored by Taylor and Goldstein, no actusl stability limit
resulted for O, but there still remained a certain although very narrow
range of unstable disturbance wave lengths X for every value of ~.

Taylor obtained a definite result for the case of a fluid e~ended
infinitely upward or downward, with leminar velocity distribution and
uniform density distribution; he obtained El= 1/4 as stability limit.
Goldstein arived at the same stability limit for the case of a fluid
extending to infinity upward or downward; with uniform density distri-
bution, the velocity below and above is constant, but varies linearly
with the height in an intermediate layer.

A comparison of this theoretical result with test data from the
Gb%tingen warm-cold air tunnel produced no agreement at sll relative
to the stability limit G= 1/4, where, of course, it should be borne in
mind that the velocity profiles measured in the tunnel are not linear>
as postulated in the Taylor-Goldstein theory. It”therefore seems
appropriate to study the modification of the Taylor-Goldstein calculations
with due ellowence for the friction and to choose for the velocity distri-
bution of the laminar flow a profile better adapted to the conditions to
be realized by experiment. This aypeared to be sll the more promising,
as the stability study on the homogeneous flow itself produced a satis-
factory result only when the friction was included in suitable manner.

Tollmien (reference 13) indicated that profiles with finite curva-
ture other then zero must be used as basis, since the apprcxdmation of a
laminar profile by pieces of straight lines is insufficient.
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In the first stability investigations of the laminar flow of a
homogeneous fluid by Lord Reyleigh (reference14), both the friction
and the profile curvature were disregarded, they did not give the looked-
for instability. Further investigations by Samnerfeld (reference15),
R. v. Mises (reference16), and L. Hopf (reference17) on the Couette
flow (lineer velocity distribution),which pertly included the friction,
also failed to give the desired results; it resulted in stability for
ell disturbance wave lengths and ell Reynolds numbers. Subsequent
investigationsby Prandtl (reference18) and Tietjens (reference 19), who
snowed for the maximum friction terms and used profiles consisting
of-pieces of strtight lines as basis, obtained an instability for the
first time, but sti~ no stability limit. Complete success, that is, the
correct theoretical calculation of the stability Umit (criticslReynolds
number) was bestowed on these investigations onlY after Tolluien took
the curvature of the velocity ~ofile also into consideration.

The Teylor-Goldstein stability studies of the flow of stratified
fluids form the snslo~ with R~lei@ts study on homogeneous fluid, as
they ignore friction, as well as profile curvature. They sre to be
extended in the following by taking friction and profile curvature
into account. (Compare the subsequent outline.)

Outline of Past Stability Investigations

Linesr profile

Curved profile

T
—

Inhomogeneous fluid
Homogeneous fluid with stratification

of densities

Without With Without With
friction friction friction friction

Rsyleigh Soxmnerfeld, G. I. Teylor
v. Mises, Hopf, Goldstein
Frandtl, Tietjens et al

Tollmien
___L_-~

Closely ellied with these flows with stratification of densities
are the curved flows of homogeneous fluid, as, for example, the stable
stratification due to the centrifugal forces in the two-dimensional flow
letween two concentric, rotating cylinders, of which the one on the inside
is stationery, while the one on the outside rotates. In 1927 Prandtl
obtained, by an energy study similer to that on flow with stratification
of.densities, a stability limit for a flow stratified by centrifugal
forces, which is in close agreement with Wendt’s measurements (reference 20).

II — —-



8 NACA TM 1262

The effect of such a stable stratification of centrifugal forces on the
critical Reynolds nw?iberwas stutied in an earlier report (reference 21),
and the results were also in satisfactoq accord with experiment.

Returning to the flow with stratification of densities, the stability
investigation can very generally be formulated as follows:

For each superposed disturbance (wave length h), the magnitude of
amplification (demping) is to be canputed for each Reynolds nuniberand
for each layer (Richardsonnumber), the laminar flow U = U(y) being
specified. If A. is the amplitude of disturbance at time t = O,

the amplitude
Pit

A atthm t is A=Aoe , where pi

measure of the amplification. This problem is dependent
essential factors, namely,

urn

P

Ap

v

$3

llkomthese
be formed which

log decrement of the amplification

wave length of disturbance

characteristic length of lsminar flow

maximum

density

density

velocity of leminer flow

difference in laminer flow

is a

on eight

kinematic viscosity

gravitational acceleration

eight quantities, five independent nondimensionels can
are the characteristic veriables of the stability

problem, namely,

p~b
— = dimensionless amplification quantity--
Urn

h
— = dimensionless
b

Umb
— = R = Reynolds
v

disturbance wave length

number
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g$l

n, — = @ = Rich@ son number

( ).

“’22

4 = corresponding density veriation
P (or ~=$l~=~ouaen~bej

The most general solution of the stability problem therefore
implies the finding of the function

(3)

In sn earlier report (reference 22), this very general function G
of five variables had been specialized to the effect that the amplifi-
cation for a homogeneous fluid (G = O, Ap/p = O) was computed as
function of the Reynolds number end the wave length of the disturbance,
hence

.l(:, ;, E)=o

The subsequent investigations are based upon the limitation
employed in almost ell other stability studies, that
of disturbance L = A. which are neither damped nor
involved (neutral di.stm%ances).

Hence, it is assumed that pi = O and the more

only wave lengths
emplified are

special function

(4)

which depends on only four variables is determined in place of (3). In
contrast with the homogeneous fluid there results at once through the
introduction of the density stratificationtwo new nondimensional}
namely 8 and Ap/p, where G gives the effect on the potential energy
of gravity of the density stratificationand Ap/p represents the effect
of the stratifLc@ion of densities on the inertia. The ratio of these two
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~4=%:=F2nondimensional, that is, ~ , is the square of a Froude
P g~

number. In place of @ and &/PY El and F can be chosen as
independent variables, in which case

(4a)

replaces (4).

The simultaneous addition of two new independent variables
resulting tiom the stratificationmeans an unusual increase in the
calculation, which in the homogeneous case is already quite extensive.
This function C@ is ced.cul.atedexplicitly numerically but not
analytically. To arrive at a relation that is conveniently comparable
with experiment, the disturbance wave length X. is, ultimately,
eliminated, by searching for that Reynolds number R = Rk (critical
Reynolds number) where precisely a single undamped disturbance still
exists, while all others are damped.

(+/k, Q, F) =0

or

Rk = Rk(@, F)

is then also determined and from it a critical Richardson number @k
the profile, that is, the maximum value of G at which an undamped
disturbance wave length still exists at all. This depends therefore
also on the IYoude number F: ok =@k(F). According to the energy

considerationsby Prandtl and Richardson, ek=l is independent of

(6)

of

the velocity profile; according to Taylor and Goldstein, who disregarded
the inertia effect of the stratificationwith respect to the gravity
effect, that is, assumed F=o, @k = 1/4 fOr certain line~ velOCity
profiles and uniform density distributions.

Tollmien’s value of the critical Reynolds number for plate flow in
homogeneous fluid was Rk = (~b*/v)k = 575, hence Rk(Qj F) = 575

for Q=O and all F. It is to be expected that (G > O)Rk(~) > 575 fOr

stable stratification, and (G <O)Rk(G) <575 for unstable stratification.
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The stability study with stratification of densities is, first, made
rather general for a profile with curvature different from zero and then
the laminar flow along a fiat plate is calculated as example, so as to
tie in with Tollmien.and with experimental data. One”more important
assumption is made, namely, that the stratification exists only in the
boundary layer, while outside of it, where the velocity of the laminar
flow is constant, the density itself is assumed to be constant. For the
distribution of the density, an exponential law

es

PO(Y) = Powe-yy

1 dp
hence that – — = -y is a constant, is assumed later for reasons of

p dy
mathematical.simplification.

2. THE GENERAL EQUATION OF DISTURBANCE

Suppose the undisturbed plane lsminsr flow has the direction of the
horizontal x exis and is given solely as function of the height y: u = u(y)
(Y axis at right angles, upwsrd). The density of the undisturbed flow at
height y is unknown: Po = PO(Y). Limited to the two-dimensional.case,

the equations of motion and of continuity read

au av_o

z+g -

(7a)

The presumed incompressibility is expressed by the fact that every
particle maintains its density during the motion, hence

Dp ***—=
Dt at + %x ‘%y=o

(7b)
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The plane Qsturbance flow is assumed as a wave motion advancing
in x direction~.

We put therefore

V=v’

where

u,= u(y) + u’

..

u ‘ = ul(y)ei(U-Pt) v! = q(y)ei(m-pt)
1

(8a)

are the components of the disturbance motion; a = 2Y1/x is real and
denotes the spatial angular frequency; P is, in general, complex;
~ = ~r + i~i. & is the angular frequency of the disturbance motion
with respect to time; pi indicates the amplification or damping,
depending upon whether positive or negative.

The pressure p and the density P are expressed as

with

P I = pl(y)ei(ax-Pt)

P = PO(Y) + P’, P = PO(Y) + P’

)

(8b)

P’ = Pl(y)e
i(ax-13t)

.
‘This implies no limitation for the general character of the

stability study, since Squire (1’roc.Roy. sot. A. vol. 142, 1933)”indi-
cated that when a plane flow is unstable against three-dimensional
disturbances at a certain Reynolds number, it is unstable at an even
lower Reynolds number for two-dimensional disturbances. The two-
dimensional disturbances are therefore more “dangerous” than the ttiee-
dimensional.
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Inserting (8a), (8b), in (7a), (7b) gives

.

,.

cp.i(au
1

- P)ul +u’v~ = -icq~ + 11(-cz%q+ lq”)

1

13

,

[
p. i(ciu -

1
p)v~ + gpl = -PI’+ v(-a2vl + VI”)

}

(9) .
VI ‘ + iaul = O

i(aU - P)P1 +vlP~’ = o J.
only terms of the first order being maintained; the dash denotes the
differentiation with respect to y. There are four equations for the
four _OwllB Uls vl~ pl~ ~d Pl} which, after elimination of Ul, pl,

and P1 leaves one equation for VI nemely

(aU -
Po’

P)2(v1° - a2vl) - a(aU - P)U’’VI’+ —
Po {

-ga%l

+ (au - $)%1 ‘
} {

- a(aU - ~)U’vl = -iV(aU - j3) VI’’”- 2a2v1°

v = v/P. is assumed constant2.

‘A flow function of the disturbance motion is introduced

*(x,y,t) =cp(y)ei(m-pt)

(lo)

2According to it, the viscosity w itself veries with y, and in
V(Y) bsuch a way that — = const. But the terms with — we disregarded
PO(Y) . ay

as small of higher order.

——.-
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. aq *
so that, as a result of u’ = —

b
and v’=-

&

U1 = q’(y) v~ = -lap(y)

. Putting further c = 13/a,where the real part of c signifies the”
phase velocity of the disturbance motion, and introducing nondimensional
vsriables by referring all velocities to the maximum velocity ~ of
the laminar flow and all lengths to the boundary-layer thickness 5 of
the laminar flow, the-fundamental differential equation for the flow
function q of the disturbance motion follows by (10) as

(u - C)p(q” -a?q)) - (u- .)u”q -L 2@?_q
Po dy um2

[
+ ;$~u - C)’%p’-(u- ] = -A(U - c) q)’’”- 2a?q”C)u’ql

(11)

The dash indicates the differentiationwith respect to %
U stends

for c for ‘,
%5

;’ urn
aforab, andR=~ is the Reynolds number.

The boundary conditions ere: disappearance of both disturbance
components for y = O and y = W, when a ls.minsrflow is assumed that
aty=O is bounded by a fixed wsll, while being infinite upward;
hence P =cp’ = Ofory=Oandy= m. With these boundary condi-
tions, the stability problem proves to be a characteristic value problem

5 dpo&
of the kind that each specified group of four values a, R, — —

Po dy ~2’
E dpo

— gives a complex value of
;0 Q

c, whose imaginary part decides between
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amplification or demping of the particular U.sturbance in the particular
flow, which is characterized by a Reynolds, Richardson, and Froude
number. However, the study is restricted, as stated in the introduction,
to disturbances lying between stability snd instability, hence for
which c .is purely resl. For this case, C<um and u<< R, provided
that U“ does not change signs in the laminer flow. The laminar flow
contains, therefore, a layer in which the phase velocity of the disturbance
motion is equal to the primary flow velocity. This layer is celled
criticel layer (Y ‘Ycrit) end plays a prominent pert in the subsequent
study.

3. ‘1’HEFRICTIONLESS DISTURBANCE EQUATION

Because aR is very great at the stability limit, Information
about the solutions of the general disturbance equation (11) csn be
obtained by analyzing the frictionless disturbance differential equation

(~ - C)P(q)” - a?q) - (u - C)u”q - ;~@@P

Fj @o
[— (u - C)%p’

‘P:dy I
- (u - C)u’q = o

Visualize the speed of the lsminer flow neer the criticel layer where
U = c expanded in a series

(12)

u- C=uk’(Y - Yk) ‘~Uk”(Y - Yk)2
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and broken off with the quadratic term. By (12)

[

1 Uk”
+Kq3+L(y-yk)+— —

2 Ukl 1{[ 1(y-yk)2 1 + ‘<(y - yk) q
Uk ‘

[
‘(y- yk)+ 1 %“

1}
;Uj(y - J7C)22ql=()

where

To make K and
distribution law

(13)

(14a)

L constant in the boundery layer, the simple exponential

P. = poe-YY (15)

is assumed for the density. Then

K=a

()

N2
tik

L=5y
}

(14b)
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The frictionless differential equation contains the two nondimen-
sionels K snd L as a result of the stratification of-densities, K
representing the gravity effect and L the inertia effect of the strati-
fication on the disturbance motion. Taylor and Goldstein ignored the
inertia effect with respect to the @avity effect slmost altogether which,
according to (13), seems to be permissible only when L << K, or

accorung to (14b) when
()

~u25 %2-% — <<1, that is, when the l?roude
d.ykg Sg

number of the flow is small with respect to unity. But, from the
subsequent calculations, it will be clesr that at equal numerical value
of K and L the influence of the gravity effect on the stability is
far greater than that of the inertia effect. For the measurements with

%2
which the calculation is to be compared,

6T
even exceeds unity, hence

L>K. Since it is impossible to give an estimate of the amount of the
inertia effect involved, the complete calculation is carried out with
gravity amd inertia effect.

‘The next step is the integration of (13). The
differential equation is visualized as expansion in

q)+(o) +Kq(K)+L(+L)+ .

broken cff with the linear terms in K and L. It
from the homogeneous fluid, the study of a slightly

(K = L = O is the homogeneous solution); ~(o) is

solution of this
powerf3of KandL

. . (16)

tiplies, proceeding
stratified flow

the alreaay known
solution of the differential equation of disturbance of the homogeneous

fluid and cp(K) and Q(L) are additional solutions due to stratifica-
tion. This expansion, and particularly the stopping with the linear
terms, is permissible only for values of K snd L which are small
with respect to unity.

As the laminar flow, whose stability is to be studied, is approxi-
mated by a constant, a linear, and a quadratic function, we inte~ate in
the following equation (13) for constant, linear, and quadratic velocity

distribution. The calculations for q(K) and q(L) run perallel.

For the zone of constant leminar-flow velocity, the density is
assumed constant, as stated in the introduction. The disturbance
differential equation then is

Q“ - a2q = O
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with the decaying solution

q) . e-aY (17)

for great y.

For linear velocity distribution with the new veriable, it is

and with

by (13)

Y- y-k
—=Y~
Y~

aY~ . al

Ylf+ -al%) +K,+LYk(Yl,-

For the homogeneous fluid, there follows

#’v(o)
—- a12q(0) =()

w~2

)2Q”=~
‘1 dyl

from

the solutions

1 (18)

.

(19)

(20)

By (16) and (19) the linear inhomogeneous differential equation for I
the additional solution for q(K) is

Y1
( )

2 ‘~ - U12T(K) . -9(0)

dY12
(21a)
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and for the additional solution q(L)

““’”(
;1 ~2Q(L)

) ‘“” ‘( )

“ “@(o)
- u&p(L) . -Jrk Q(o) —

dy~p - yl dyl

19

i3>

(21b)

the homogeneous prt of both equations being the same as the differential

equation for q(o).” Hence, only aparticula’r integral of (21a.)and (21b)

has to be determined to produce the general integrals Q(K) and cp(L).
These integrals can, however, be determined immediately by integration.

The result is a fundamental system for the solutions Q(K) and Q(L)
by 21a, 21b) in the form

q(o)

J
mp2(@QJ3) ~yl +92(0)

J

Y1 q(o)r+v(o)
q)voo . .Fr+(o) - —

yk

1

dy
Yo Y~2 yk

Yo Y12

●

J( )(0) @p
+ f#) ‘l TJO)!L+ - — @l(v= 1,2)

Yo
dyl

The choice of the lower integration limit is immaterial; the
present choice is the point y = Yo, where the linear velocity profile
is joined to the parabolic.

For parabolic velocity distribution, which is written in the form
.

U=(a-y)2 (23)
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(a = given constant), there results from the
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new variables

Y - Yk
Ya=a-yk

and

from equation (13).the disturbance differential equation

(24)

[( ) ()]2 dcp
+ L(a - Yk) Y2 1 - 91-Y 2)v Y2q ~ =0

2

The solution q(0) of this ~q~tion for the homogeneous fluid

(K = L = O) has already been computed by Tollmienamd others. A
fundamental system is given by

r+l(o)
d1Y2 + d2y22 + d3y23+...—=

a- yk

ql(o)
cp2(0)= e. + e~y2 + e2y22 + . . . - a-k log Y2j

.

1

[
n(n - 13)~-1 + 292 q-a - # %-3

2n(n - 1)
n = 2,3, ...

92 1 %?2
1; el =0; e2 = ~ - 1; e3 =~+ —“ . . .

18’

%22 92
where dl=l; ~=-~; d3 = ~; d4 = ~8;

(25)

dn =

e. .

1-
‘n =m~ Ln(n -3)en-1+ 2~2en-2 - %2en-3

1
-(2n-3)~-l +2(2n-1)~

n =2,3 . . .
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.

By (16) end (24), the differential equations for the additional solu-

tions rp(K) and (p(L) are
–,.

~-%%(K)+y2~:),(K)=,(o,( )(
y2 2 d2q)(K)

y22~._
2

( )(Y2 #@(L)

)

-W%(L) + (p(L)=-(~ -

[ ()]

Y2 dq(,)
y21 -5. — yk) (1-y2)’$0)-y2 1-~ —

dy22 dy2

\

The homogeneous part of this inhomogeneous differential equation

for T(K) and q(L) again agrees with the differential equation

for (p(o);hence a fundamental system for the general solutions q)(K)

end cp(L) is obtained againby quadrature;

cp2(o) r2 Cpl(opv(o)
+— Q2 (v = 1,2)
a- Yk yp 2

Y, Y2 - ~

q#) = q.$o) - cpl(o)

;; ,

@) (1 - YAW(O) - TV
(0)’ Q2

()

Y2
y21 -7’

> (26)
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Herewith the frictionless solutions of the stratified fluid for
linear and parabolic velocity distributions are obtained. Of these

(0) ~ th~ sin@ar pohlt y = yintegrals On.lY VI of the differential
(0), ~l(K), and 92equation is regular, while p2 (K!, ~l(L), and q2(L)

exhilit singularities,where either they themselves or their derivatives
-1

contain terms ’with log(y - yk) or (y - yk) . These singularities are

o%viously attributable to the disregarded friction, and disappear as soon
as they are properly allowed for. The integration slong the real y sxis
must be replaced near the Singular pOint y = yk by the integration in

the complex along a semicircle arolnldpoint y = yk. First, the sense of

rotation about point y = yk must be decided upon, that is, the choice

of the branch of the log at transition from positive to negative y - jk.

Tollmien indicated this transitional substitution for cp2(o) which iS
obtainable when the entire eqaation (11) is discussed in close vicinity
of the critical point y = yk.

.

4. BEHAVIOR OF THE SOLUTIONS IN TEE NEIGHBORHOOD OF

THE CRITICAL LAYER

To this end, a small zone around point y = yk (transitional zone)
is assumed, in which the substitution of U - c bY Uk’(y - yk) and

u’ and U“ bY Uk’ snd Uk” is sufficiently accurate. In addit~on

“Y- Y~ = (&KJ~’)-l/3 q=E~

where, on account of the smell value of G, even
zone (that is, small values of y - yk), q can

By (11) and (27), the differential equation

in the transitional
assume great ,values.

for q(q) is

(27)

(28)

L
+Kq+ —6?(P - llcp’)=0

Uk’2
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l~u”
where the terms with - — —R PO dy

in (11) are disregarded as small of the

second order. Tollmien (reference 13) demonstrated by means of the
corresponding di~ferentialequation for homogeneous fluid (K = L = O)

that the transitional substitution for CP2(o) reads as follows

Y >o:q#)= - ‘2+. .+:$qlmog(y-yk)-Y~ _ e. + ely + epy

(29)

Thus, of the infinitely many values of log(y - yk) + 2kfii
(k= positive or negative whole number), the one with k= -1 proves

physically real. A calculation similar to that made by-Tollmien for q?
(o)

—

‘K), q2(K), end q2(L), n~ely, that thegives the ssme result for (pI(

terms with log (y - yk) for negative y = yk must %e replaced by

log y - yk- ifi..A further approximate calculation for the homogeneous

fluid, which in (28) includeH only the highest friction term (icp””+ ~qI”= O),
~3(0, and 94(0) needed for representinggives the two other solutions

the genersl integral of the differential eqw,tion of disturbance of the
fourth order (11). It is

H(1)>(2) is the Hankel function of the first end second kind, respec-
tively.

Additional solutions for V3 and cp4,namely,

‘?3,4 = CP3,4(O)+J@3,4(K) +Q3,4(L) + ● . ●

should slso be computed, lx.ztthe subsequent paragraphs indicate that

the calculation of q3,4(K) and p3,4(L) is superfluous because

.

(30)

I 111111 —,.,,,.-— . . I.. . . . .
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(31)

The effect of the stratification of densities on the frictionl.ess
solutions cp1,2 is, therefore, substantially greater than on the friction

solutions Q3,4Y so the latter can be disregarded in the approximation;

this simplifies the calculation considerably. The result is analagous to
the conditions in a flow with stratification of centrifugal forces. In
the earlier G6ttingen report (reference 20), it also had been shown that
in stable stratification due to centrifugal forces the effect of this
stratification on the frictionless solutions 91,2 is very much

greater than on the friction solutions q3,4. -

The following proof is given:

5. THE VARYING EFFECT OF THE STRATIFICATION

ON THE TWO PAIRS OF SOLUTIONS

OF DENSITIES

Desired is a representation of the four integrals (pi,$@ Q3,

and (p4 for the wall proximity (very small Y) on the specific assmption
that the phase velocity c of the disturbance motion is very much higher
than the velocity near the wall. In other words, the critical point is
to lie outside the layer where the solutions me enalyzed. For the wall
proximity U - c car-then be

1 dPo
On account of -— — =p. dy

equation of distur~ance for a

T““ + (iclRc- 2c#)q”

replaced by -c and U“ -by Uw”.

7, according to equation (15), the

layer near the wall is by equation

+ [~4+4JW”+%-~2&’‘0

The solutions of this equation with constant coefficients are of

Tv = ekVy v =1,2, 3,4

general

(11)

the form

.
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kv are the four roots

k4 + (f@C -

25
,

of the equation of the fourth degree

Both pairs of solutions are given by

hence

2
‘1,2 = U2 - +(U;, + ~)

or when Uw” = O

or

[ ()]2k
K Uw’.fa. -——

1,2 2 UC

Likewise, when a2 is disregarded relative to cdlc

K()Uwr 2
k3,42 = -iaRc + ~

or

k3,1+= ~@[ - %%Y]

From

[()]12
K“wya,l ———

91 = Ql(o) + Kpl(K) = e . 2 u
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fOllows
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and likewise from

~3
SQ3(0) +Q3(K) =e

-q=[ - $&(~jY

Hence

With b as reference length, the flow along the flat plate is, at the
stability limit, (reference 22) approximately

a =0.@t; R = 1700; C =0.42

hence

The same holds true for q2(K) snd (P~(K),and a similar derivation

(L)can be given for p3 end C44(L),with which equation (31) Is therefore
proved.
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This indicates that the effect of the stratification

27

of densities

on the slowly variable solutions

much greater then on.the rapidly

6. FORMULATION OF T%

The next problem deals with

qq snd $9, which are as e+ay, is
eklkaxcyvarying solutions which are as .

CHARACTERISTIC VAIJJEPROBIZM

the bounda~ conditions end also the
formulation of-the characteristic value problem. A basic velocity
profile is assumed which increases from value zero to a maximum value %
which it then maintains constant. By (17), the solution of the
differential equatioa of disturbance for the zone of constant velocity,
where constant density is assumed also, is: cp=e-ay. With y=a
denottig the petit of contact with the zone of constant U, the bounda~
condition at this point reads

Ta ‘ + Uq)a= o (33)

The general integral reads

9 = CIP1 + C292

The boundary conditions (q = q’ = O
considerably simplified on the basis
the four integrals ql , 92> Q3, ad

+ C3Q’3+ C4T4

fory=O and y=co) canbe
of the particular properties of
v~ “ Thus, the integral q4,

which for very great y increases infinitely (like
not be considered in the general integral, so that

rthe integral q3, which is as e- ~cy, needs to be
the wall, whf~e in the connecting point on the zone

e+ -y ) need
C4 = o. Furthermore,

considered only at
with constant velocity

(Y = a) it canbe regarded as zero with good approximation.

For y = a, the boundary conditions read, by (33) therefore, simply

Clcp’la+“C2cp’2a+a(C~qla,+C2q-J =o

or, when putting

~;a. + qa =m~a v = 1,2 (33a)
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Clola+ cr2’q = o (34a)

The boundary condition at the wall (y = O) reads

( 34C)

hence the three homogeneous equations (34a), (34b), end (34c) as boundary
conditions. Tf one solution q other than zero exists, the determinant

=0 (35)

must disappear, wherewith the stability investigation as a characteristic
value problem of the differential equation of disturbance is proved.
The complex equation (35) depends, besides the constants of the profile
ueed as basis, upon the parameters u, c, R, K, end L - all of which,
especially c, are purely real - since only the transitional points from
stability to instability are involved. The functions qvw and @va are

usually complex (compare equation (29) and (30)). Visualizing the
parameter c eliminated from the two real equations with which the
complex equation (35) is equivalent leaves one equation in which a, R, K,
and L are contained. This equation gives, for fixed K snd L, the
indifference curve in the oll plane corresponding to this stratification
(K, L), and which separates the damped from the undamped
Thus the solutfon of the stability problem terminates in
of equation (35).

Calculation of the determinant (35) gives

93W—=
P’3W

disturbances.
the discussion

(36)

- .-
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This equation is then expanded in powers of the stratification
quantities K and L corresponding to the fact that, starting from the
homogeneous fluid, the stability study for slight stratification is to
be carried out. Only the right-hand side of the equation has to be
expanded, which contain~ the frictionlees solutions exclusively, hence
iq not dependent on the Reynolds number R. On the other hsnd, the
solution 93 is not dependent on the laminar flow serving as basis.

It can be sumarily taken over from Tiet$ens’ report. The left-hand
side of equation (36) depends only on

(37)

1 T3W
For D(o~) = -— .-~ the follow~g talle I fS obtained accord~g to..

Tietjens:

-1’lw

o
0.5
1.0
1.5
2.0
2.5

CV3W

Table 1: D(qw) as Function of VW

D(TIW)
—.———

0.702 -0.425 i
0.785 - 0.411 i
0.920 - 0.389 i
1.043 - 0.297 i
1.206 - 0.147 i
1.357 +0.108 i

-%?

R
4.0
4.5

;:;

Jxl-iw)

1.400 + 0.515 i

1.180 + 1.130 i

0.460 + 1.250 i
-0.0405 +o.OWQ i
0.0057 +0.3645 i
0.1913 +0.2393 i

(38)

After putting

equation (36) gives

D(qw)
-— = E(u> C, K, L)
nw

(39)



30 NACA TM 1262

This complex equation forms the starting point for the subsequent calcu-
lations, the aim of which Is the explicit representation of the relation
between the five quantities a, c, R,’K, end L given ly this equation.

7. SOLUTION OF THE CHARACTERISTIC VALUE F!ROBLEM

For the numerical treatment of this equation, it is essential that,
of the five parameters on the left-hand Bide, the two stratification
quantities K and L do not occur nor the Reynolds number R on the
right-hand side.

The solution of this equation, that is, the calculation of the
correlated characteristic values a, C, R, K, and L, is first g?ffected
analytically so far as the expansion in powers of K end L is
involved. The sulmequent treatment of the ensuing equation must be
made by numerical graphical method, like in the earlier stability
~tudies (references 21, 22). Since the whole calculation in its
analytical, as in its numerical-graphical part, is far too extensive to
be reproduced here, a brief outline of the line of reasoning must be
sufficient:

The expansion of equation (39) in powers of K and L is formally

D(~w) am-— = E(”)(a,c) +K~ +L% + . .
%?

a

(39a)

E(o) denoting the value of equation (38), when Inserting for Ql, (P2

the solutions for the homogeneous fluid, that is

their expansion in

~2w(o)qa(o) - ~1w(o)02a(o)

~2w ‘o)’%a(o) - Tlw(
o)’ (o)

02a

(40)

are obtained when introducing for all terms in (38)

powers of K and L, that is
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‘?~ = Tw(o) +

.,..

%kl = %a~o) +

~V(K), #), ~d hence

section 3.

31

Kyw

~~ }

(K) + L(pw(L)+ . . .

(v= 1,2) (41)

KU)Va(K)+ L~a(L) + . . .

~Va(K) ~d @Va(L) are known according to

The complex equation (39) is equivalent to two real equations. For
the left-hand side of equation (39), the decomposition into real and
imaginag part is immediately given according to table 1. The right-hand
side contains an imaginary component as a result of the transitional
substitution of the integral QD (equation (29)). Effecting the indicated
expansion in powers of K and
paper work, in the expressions

numerical values of E(0), ~,

x

‘L” explicity results, after considerable
for the real end imaginary pert of

of the two varia%les m and c. The

m
--, for the velocity profile with which
a

the calculation was made, are indicated in table 2. The further solution
of equation (39) is made by graphical method. With fixed c, K, L the
left-hand side of equation (39) is plotted with qw as parameter, and
the right-hand side with a as parameter in a polar diagr~ (fig. 2).

In general, it results in t~’o

the E(u, CY K> L) curve for
are found. The corresponding

.

~w

intersectionpoints of the ~ curve with
~w

which the parameters ~J %> -d ~wl> %@
Reynolds number follows then from the equation

The great advantage of the expansion in powers of K and L is
manifested in the numerical calculation by the fact that the relation
of the desired transition points frm stability to instability of the
stratification condition is verified h very simple manner. Computing

the quantities E(o), * &
bt ~L

for fixed c, as function of u, immediately

yields the curves E = E(a,c,K,L) for the homogeneous flo~Esnd for all

states of stratification. From the numerical values of and aE
%

L in
Ftable 2, it is apparent that the influence of the gravity effect o the

stratification is very,much greater than the influence of the inertia

effect

of K
tions,
plate,

( )g>>g. In the present calculations, small negative values

a’nd L were also included, that is, slightly unstable stratifica-
such as the flow of an evenly tempered air current above a heated
which is a little warmer than the air.

.. ..
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~ARLE2.- r) r) r) P)R(E),I(E),R~, 1~, R~ ,I~~FUNCTIONOFa

FOR C = 0.20;0.25;0.30;0.35;0.375;O.@; 0.425;o.45.

R(E)
I ‘(E) I 4%) 14%) I R(%) I ‘(%)

1=0.20 0.615
.30 .396
.40 .132
.50 -.205
.60 -.610
.To

c = 0.20

T

10.00 2.03
10.88 3.22
11.78 4.k9
12.84 5.94
1.4.06 7.79

0.546
.350
.141
-.165
-.513

0.026
.050

c = 0.25
I 1 I

0.010
.OCQ

-.005
-.040
-.155

0.009
.024
.047
.085
.150

0.820
1.41
2.10
3.04
4.10

0.021
.050
.095
.159
.263

-0.034
-.0’72
-.135
-.255
-.465
-1.09

8.64 2.11 0.730
9.44 2.&1 1.17
10.28 3.59 1.49
11.46 4.37 2.18
12.56 5.08 2.89

.090

.155

.273
I I I I

c = 0,30 c = 0.35

I
0.30 0.642
.40 .491
.x .333
.60 .128
.70 -.111
.& -.420 I

1.32 0.490
1.77 .690
2.15 .800
2.55 1.100
2.87 1.460
3.84 1.820

0.026
.052
.091
.157
.260
.442

7.10
7.74
8.38
9.28
10.26
n. 80

0.730
.615
.480
.335
.165

-.029

0.027
.052
.090
.151
.245
.402

5.92
6.45
6.96
7.56
8.3o
9.08

0.850
1.10
1.28
1.47
1.56
1.52

0.460
.570
.740
.910
1.080

-0.110
-.192
-.335
-.565
-.985

I
!, c = 0.375

1 I i

c = 0.4(2
O:ACJ I 0.652

.542
.60 .417
.70 .285
.80 .133
.90 -.o24

0.050
.088
.142
.232
.369
.574 m

C = 0.425

0.690 I 0.050 I 5.48 \ 0.586] 0.324
.590

-0.123
.087 5.76 .650 .430 -.219

.484 .139 6.14 .645 .520 -.355

.371 .222 6.58 .506 .m -.570

.250 .339 6.91 J;; .595 -.860

.129 .525 7.26 .452 -1.26
11 1 1 1 1 1 I

c = 0.45

~T
0.40 0.720
.50 .637
.60 .545
.70 .452
.80 .360
.90 I .266

0.049
.085
.133
.209
.315
.475

—.
4.96 0.380 0.270 -0.125
5.24 .390 .350 -.223
5.51

I
.330

I
.k23

I
-.355

5.94 .190 .440 -,555
6.12

I
.000

6.28 I
.395

I
-.795

-.220 .210 -1.10

h)
E
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8. APPLICATION TO PLATE FLOW

33

For the”sta%ility study with stratification-ofdensities, the
laminar flow along a flat plate has been chosen as example for the
numerical.calculation. Tollmien.made the corresponding investigation
for the case of homogeneous fluid (reference 13). Blasius originally ‘
computed the lsminar velocity distribution along the flat plate
(reference 23) according to fomnulas %y Prandtl (reference 24). In the
present stability study, the modification in the leminar flow due to
the stratification of densities can be disregarded because a simple .

evaluation indicates that it is small, when the boundary layer contains
only a slight stratification of densities as it was assumed.

3The force in x direction produced by the stratification per unit
volume is:

and the friction per unit area @J
dy

or per unit volume p dU l.lUm-—-
8 dy ~

Accordingly, the effect of the stratification
laminar profile can be disregarded when

In that case

“r
6* ‘x

~m

hence it must %e

of densities on the

Imm
W# <c ~

%
‘r *<<’

●

which is precisely the assumption made a%ove.
,.

a“
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For the present purposee, an approximate representation of the
Blasius profile 3Y a strai@t line and a parabola is used (fig. 1).
The profile is to start at the wall (y = O) with a straight piece,

in turn,which is tangentially joined to a parabolic-piece and it, T -
tangentially onto the constant velocity U = Um.

The result is the approximate representation

2
0.1755:51.015 # = 1 -

( )
1.015 - g

m

;= 1.015 u~—=
Um

earlier indicated for U.

But for theHence a = 1.015 by comparison with equation (23).

transitional substitution (equation (29)), U“/U’ must be taken according

to the exact Blasius series) not U’ = constant ~d U“ = O in the
linear range and U“ = constant in the parabolic range. The first terms

give

(43)

u“
()

2
—=
urn -18.4 ~

This supplies all the data necessary for the numerical calculation.
Figure 2 shows the previously described polar diagram for a specific

z c-value (C = 0.10), where the several E curves correspond to the
written-in values of the stratification quantity K, and L is alweys

equal to zero. For this C-Value- say, f’or K >~ - there are no inter-
~ 29

section points of the “E curves with the curve, hence, no
G

instability. For other c values, this maximum K value, at which
instability is still just possible, is different. The highest possible
K value at which instability is still just possible (critical value
of K) is K = 1/24, when assuming L = O. For other values of
L (L = -1/10, +1/10, +1/5), other critical values of K are obtained.
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1

“TABLE3

q#*
TRANSITIONPOJ3’J!Sub* AND ~ FORVARIOUSVAIJ.LESOF

THE Sl?RATIFICATIO?iQUANJ!ITIESK AND L

K=-&l I LO= I K=&

c ()5$ 01(**)1 ~2
%$2 (cf5*)2

1

0.20 1.15x 104
0.30 1.8J+x 103
0.35 1.01x 103
0.375 7.25X 1$
0.40 5.86x 102
0.45 4.04x 102

0.038
0.078
0.101
0.121
0.139
0.193

T
0.20 9.27X 103
0.30 1.68x lo3
0.35 9.20x lo2
0.375 7.15x 102

0.40 5.70x 102
0.45 k.zlx 102

o.o~
0.093
0.1.21
0.140

0.159
0.233

---—----
8.75x lo3
2.99x 103
1.88 x 103
1.30 x lo3
6.08 X 103

0.187
0.232
0.251
0.266
0.282

----------
6.75X 103
2.61X 103
1.70x 103

1.20x lo3
5.23X 102

K=-&

0.20 8.22X 10310.060] ----------

0.30 1.& x 103 0.106 5.71x 103
0.35 8.96X 102 0.136 2.36x 103
0.375 7.05x 1$ 0,156 1.57x 103
0.40 ~.76X 102 0.177 1.X2x 103
0.42 5.18X 102 0.198 8.28x 103

K=O

--—-
0.202
0.240
0.257

0.27T
0.264

-----

0.211
0.245
0.26?
0.273
0.279

0.20 7.20x 103 0.07’7 3.76x 104 0.149
0.25 3.01x 103 0.101 1.20x 104 0.188
0.30 1.53x 103 0.129 4.64x 103 0.223
0.325 1.15x 103 0.143 3.29X 103 0.238
0.35 8.93X 1~ 0.159 2.07x 103 0.251
0.375 7.36x 1$ 0.181 1.42x 103 0.264
0.40 6.33X lC# 0.205 1.02x 103 0.274
0.42 5.76x 102 0.239 7.13x 1$ 0.273

---

ml=
0.10 1.05x 105 0.053
0.20 7.16x 103 0.095
0.30 1.57x 103 0.148
0.35 9.62 X1O20.183
0.375 7.95x 102 0.207
0.40 7.67x & 0.251

.
K=&

U“E
V2 (d’):

T4.05X 105 o.08g
2:57X 104 0.164
3.88x 103 0.232
l.~ X 103 0.256
1.26x 103 0.267
8.63x K+’ 0.265

0.10 1.05x 105 0.O& 2.95X 105 0.098
0.20 7.30 x 103 0.108 2.11 x 104 0.172
0.30 1.66 x 103 0.165 3 48 X 103 0.234
0.35 1.06X 103 0.204 1.69X 103 0.258
0.375 8.97X 102 0.239 1.11x 103 0.263

K+

0.10 1.19x lo5 0.079 2.24X 105 0.104
0.20 8.08x lo3 0.r25 1.71x 104 0.179
0.30 3.14X 103 0.238
0.35 1.47X 103 0.255 ,

I+

0.10 1.42X 105 0.097 l.a X’105 0.105
0.20 9.04x 103 0.145 1.44x 104 0.183
0.30

I
2.73 X 103 0.236
1.$Klx.103 0.244

.T

0.2257.18x 1031o.lwI ----—---------



TABLE3 - Continued

c

0.30
0.35
0.40
0.425
0.45

K=-lm

()qJj*T
,1

1.94 x 103
9.94 x 102
6.49 X 102
5.20 x 102
4.58X102

(C15*)1

0.072
0.102
0.130
0.155
0.184

.

‘=*

()um~*
(cf5*)2

‘2
1

—-------- I -----

3.16)( 103 0.218
1.38 x 103 0.248
9.41 x 10* 0.254
6.38 x 102 0.252

0.20
0.25
0.30
0.35
0.40
0.425
0.45

1.17 x 104

4.n x 103

1.81. x 103
1.03 x 103
6.22 X 103
5.29x 103

4.92 X 103

0.040
0. o@
0.086
0.114
O.ly
0.173
0.218

L=-lm

---------

----------

~.46 X 103
2.76x 103
1.28 X 103
8.63x &
5.44x 102

-----

----

0.185

0.225
0.253
o.2d?
0.245

.

()lJm~*c
‘1

0.20 8.39X 103
0.30 1.67x 103

0.375 7.94x 1~
0.40 6.71x 102

K=O

(~’)1

0.065
0.113
0.166
0.187

()um~*

72

----------

5.21 x 103
1.51X 103
1.07X 103

(fi’)2

-----

0.207
.0.250
0.257



TABLE 3 - Continued

K=O L ~
= 10 ‘=6

‘ ()

um#l

()
(ti’)~ ‘+

()

um~*
c. — (C15*)2 c —

()
(m*)l 5!$ (b*)*

‘1 2 ‘1 2 ;

0.20 6.16X 103 0.096 1.g8x 104 0.187 0.20 8.53X 103 0.175 L 14 x 104 ‘o.lgg
0.30 1.45X 103 0.139 k.09X 103 0.242 0.30 1.80x 103 0.210 2.72x103 0.257
0.375 6.47x 102 0.195 1.33 x 103 0.286 0.325 1.38x 103 0.228 1.94x 103 0.265
0.40 5.49x102 0.214 9.75x1$ 0.296 0.35 1.19X103 0.259 1.30x 103 0.270
0.42514.65xlc# 0.251 6.65x102 0.300

K=~
35

K= 0.20 9.58x103 0.188 1.04x 104‘0.195

0.20”7.I-2x 103 0.141 1.49x d 0.188 0.25 3.82x103 0.203 5.05x 103 0.225
0.30 1.57X103 0.183 3.1OX103 0.256 0.30 1.91x 103 0.22k 2.58x103 0.27?
0.3757.86X102 0.251 1.07X103 0.288 0.3251.55X103 0.236 1.76x103 0.262
0.39 7.66x & 0.272 8.45X K? 0.284

K=~

0.25 4.1OX103 0.212 4.70X103 0.224
0.30 2.06x103 0.235 2.37x103 0.250

w
4



TABLE 3 - Concluded

c

0.20
0.30
0.375
0.40
0.45

0.25
0.30
0.35
0.37!5
0.40
0.425

()~fj+
‘1

5.26 x 103
1.32 x 103
5.52 x d
4.34 x 102
2.87 x K#

1.p x 103

8.65 x 102

6.76 x &

5.39 x 1$
5.06 X 102

K=U

(ti’)~

0.136

0.157

0.232
0.231
0.272

.

‘=?%

( Jw’

2

1.30 x 104
3.58 x 103
1.21 x 103
9.91 x 102
5.05 x 102

0.216 I 4.55x 103

1-
0.212 --------

0.242 ---------

0.259 1.04X103
0.285 8.17x102
0.311 5.82x 102

~

‘=5
I

(fi*)2

0.218
0.269
0.310
0.320
0.340

0.243
-----
-----

0.317
0.321
0.326

0.30
0.325
0.35
0.375

()q&j*

-T- I

1.77X 103

1.27x 103
9.26x 102
7.52x 1$

1
K=>

40

(m*),

0.247

0.256
0.268
0.290

K1=—27

()U**

T
2

2.26x 103
l.mx 103
1.43 x 103
1.04X 103

(@*)
2

0.276
0.294
0.308
0.319

0.30 1.88X 103 0.258 2.17x 103 0.280
0.325 1.35X 103 0.266 Ion x 103 0.296
0.35 1.OIX103 0.280 -“-------------

K=&
2/

0.30 2.02X 103 0.274 ---------- -----

0.325 1.40X lo~ 0.274 1965x 103 0.294
0.35 1.04X 103 0.290 1.26x 103 0.312
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So far, all lengths had been referred to the boundary-layer
thickness 8 (half the width of the parabola inscribed in the Blasius
profile, fig. 1). For the presentation of the ~themati.cal results, the,...

displacement thickness
~*”=ll@ ““-”’” ““

dy is chosen as reference
(jU

length (5* = 0.3415).

The transition points computed for the various stratifications
(characterizedby K and L) are correlated in table 3,and the
corresponding curves plotted in figures 3, 4, 5, and 6. The area
circumscribed by the curves represents the area of unstable disturbances.
The diagrams indicate the looked-for connection between the wave length
of the disturbsmce A = 2fi/a,the Reynolds nuniber R, and the stratifi-
cation (K and L) as formulated in equation (4) in the introduction.
Each diagrsm corres~onds to a specific value of L(L = -1/10, O, +1/10,
and +1/5), while the several curves of each diagram relate to different
values of K. Each curve is therefore characterized by two parameters K
and L. The curve K = O, L = O is Toll.mien’sindifference curve for
homogeneous fluid. For stable stratifications (K>O, L> O), the
area of the unstable disturbances is smaller and for unstable disturb-
ances greater than for homogeneous fluids.

The indifference curves themselves exhibit the following unusual
fact: For homogeneous fluid and for unstable stratificationseach
indifference curve extends to infinity at great Reynolds numbers, while
for stable stratificationsthe indifference curves are closed. With
increasing stable stratification,the unstable range of the wave length
of disturbance enclosed by the indifference curve becomes consistently
smaller, until finally at a K value dependent on L the indifference
curve shrinks to a point located in the cd? plane.

The critical Reynolds number corresponding to a certain state of
stratification is of particular interest. In figure 7, the critical

()um5*
Reynolds nuniber is plotted against Q, for several values of

:mpk
the Froude number ~. Thus is the relation important for”the com-

parison with experiment, as formulated in equation (6). For small
values of G, the variation of the Rk–curves with the Froude number
Ump

is rather small..
~ ,

But the stability limit ~ - that is, the

m&mum value of the stratification quantity at which turbulence is
still possible - still depends to some extent on the Froude number.
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TABLE4

(1

un6*
TEECRITICALREYNOLDSNUMBER ~ ASA HJNCTIONOFTHERICHARDSON

/( 1v3Pg2 g
NuMBERG=— —

Pow m m ‘OuDE ~ bg

-0.0208 387
-0.0142 438
-0.0087 487
0
0.0090 ;Z
0.0153 887
0.0233 1182
0.0314 1631
0.0392 2920
0.0409 llu?cl

ecr~t= 0.0417 m

um2
—. 1

-0.0200
-0.0100
0
0.Olcil
0.0200
0.0250
0.02!30

‘crit= 0.0370

(–)lJm~*

‘k

410
480
575

1%3
x287
1%!4

5350

um2
—= 2
6g

@

-0.0200
-0.0100
0
0.0100
0.0200
0.0250
0.025Q

Elcrit= 0.0340

420
485

%
1025
1300
1620
4000

Eig

e

-0.0200
-0.0100
0
0.0100
0.0200
0.0250

kit = 0.0297

440
495
575
no
998
1315
23P

6g “

@

4.0200
-0.0100
0
0.0100
0.0200
0.0250

crit= 0.02S0

()q#*
‘k

450
500
573
693
980
1305
1850

I
I

i_
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“2

()

u~
The dependence @k.=@k ~

um2
is reproduced on figure 8. —=o -For ~+g

. . .. . hence, for the case that,the inertia,effect of the stratification is
disregarded relative to the gravity effect - it restits in @k . 0.0409.
Therefore, the inclusion of the friction for nullifying the turbulence
affords a considerably lower value of the stratification quantity than
without friction, according to Taylor and Goldstein, who obtained
~=o.250. -

By equation (lb) the stratification quantity K is so defined
that the velocity gradient must be taken at the critical point which
differs according to the position of the critical layer. But, in the
present case, it was preferred to form the Richardson number with the
velocity gradient at the wall, namely

(44)

as obtained from K by the reduction

e ()/()=K~ 2 ~ 2
k w

Since
(%)JHW

is always close to unity, the @ values differ

little from the K values.

9. COMPARISON OF TKEORITl?ICALWITH-EXPERIMENTAL DATA

Velocity and temperature distributions in a flow with stratification
of densities, which are very appropriate for the comp~ison with the
present theory, were made some years ago by Reichardt in the wa~-cold
air tunnel of the Kaiser Wilhelm-bstitute for flow research at Gottingen.
The tunnel is 16 m long, 1 m wide, and 25 cmhigh. The velocity profiles
were measured at the end of the tunnel with a hot-wire survey apparatus
which, to compensate for the temperature effect, consisted of two hot
wires of different diameter. One of these wires could at the ssme time .
be used for temperature recording. The study so far included only the
stable case, where the upper plate of the tunnel was heated with steam
(100°) and the bottom plate cooled by tap water (10° C), hence at a

‘Not published so far in detail; see the test reports (reference 26).
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temperature gradient of 90° C at 27 cm. Very ”lowairspeeds.of around
1 m/see were indicated, since at higher speeds no perceptible effect
of the temperature stratification of the flow is produced. Figure 9
represents a velocity and temperature distribution measurement. In
the central part of the tunnel where the speed is practically constant,
the temperature is also nearly constant.

For the compariscm with the present theory, the measured profiles
were evaluated to the effect that for each profile the maximum
velocity Um and the boundary-layer thickness 8 (and hence the

displacement thiclmess 8*) of the boundary layer are obtained. With
these, the theoretical velocity distribution of the laminar flow was
then ascertained and their velocity gradient at the wall

()dU u
Fw = 1.68+

computed. In figures 10 to 14 are shown for various maximum veloci-
ties Urn,the measured velocity and temperature distributions for
the boundary layers on the warm and cold plates together with the
distributions upon which our stability calculations were based. The
relation between temperature and density is, on account of the constant,

T, the ‘absolutetemperature;
density distribution assumed
according to the law

subscript w, the value at the wall. The
for the present theo~ (equation (15))

Po = powe-YY

corresponds therefore to a temperature distribution

(45)

The
way that

possible
basis of

constant 7 was determined from the measurements in such a
the recorded temperature distribution agreed as closely as
with the distribution given by equation (45), which served as
the present calculations (cf. figs. 10, 11, 12, 13, and 14).
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the Richardson

43

number

Umz q@*
the Froude number F= and the Reynolds nuniber ~ for each

profile can be computed. The value corresponding to the mean tempera-
ture i.nthe boundary layer was chosen as the value for the kinematic
viscosity V. The numerical data are reproduced in table 5.

The decision of whether the recorded velocity profile was lami.nar
or turbulent was made from oscillographic records of the voltage
fluctuations in the hot wire, but it could also be observed direct from
the shape of the velocity profile. Despite the finite tunnel width and
the density differences, the measured velocity for the laminar profiles
is in good agreement with the Blasius plate flow, while the turbulent
profiles have almost the form of the 1/7 power law.

For comparison, the test points were plotted in an R,G diagram,
El being expressed at logarithmic scale (fig. 15). To each profile ifi
figures 10 to 14, there corresponds one point in this diagram, the
laminar emd turbulent profile being characterized by different symbols.
The solid curve is the theoretical stability limit which gives the
critical Reynolds number as function of the stratification quantity El
for the Froude number F = O. The curves for the other Froude numbers
are omitted since they do not differ appreciably from the curve
for F = O, according to figure 7. The solid curve gives the boundary
between the theoretically stable (laminar) and the theoretically unstable,
(turbulent) attitudes. The Taylor-Goldstein value @crit = 0.250 and

the value Rcrit = 575 for plate flow in homogeneous fluid are also

included. The comparison of the presented theory with the test data at

u: .
which the Froude number — ranges between 0.86 and 3.82 (compare

Sg
table 5) indicates that in the theoretically stable zone only laminar
attitudes, and in the theoretically unstable zone, with one single

5 Incidentally, itexception, only turbulent attitudes were observed.
should be noted that it is”not contrary to theory when laminar states
are still observed closely above the stability limit Rcrit = Rcrit@;

5From the oscillographic records on the rejected profile, no clear dis-
tinction could be made between laminar and turbulent.

..——... —. .-—,,..-,,. .,.— .,,.!.. .- —



TABLE5.-COMPARISONWITHTESI!DATA

FigureNo.

14

{

w.PI.

k.P1.

13

{

w.P1.

k.P1.

{

w.P1.
12

k. P1.

11

{

w.P1.
k. P1.

10

{

w. PI.

k. P1.

Um
m se~l

127.5

134

105

111

102.5

104

91
98.5

81

87.5

6~ f5*m

4.341.48

7.202.45

4.871.66

6.132.09

5.691.94

6.342.16

6.382.18
6.042.06

7.‘@2.63

5.751.96

&2s cc-”

0.202

0.151

0.204

0.151

0.204

0.155

0.204
0.154

0.204

0.154

——

:Tv- Tm)(

62+

-25

&l

-25

&l

-32

a
-30

60

-30

I 1 I

0.04319340.01733.82

0.011721750.01172.54

0.03598550.02692.31

0.013815360.01442.05

0.03079750.03241.88

0.0169145a0.02181.74

0.02749730.04671.32
0.016513170.02171.64

0.022510!%!0.07210.86

0.017411080.02611.36

theoretical

atable

unstable

stable

unstable

stable

unatable

atable

&table

stable

stable

experimental.

lsml.nar

turtilent

laminar

turbulent

lam,lnar

turbulent

hminar
?artlyleminar,partlyturbulent

laminar

laminar

w. P1. = hot plate k. P1. = coldplate

!2
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for this curve indicates the attitudes where the amplification of the
disturbance motion is exactly equal to zero. For an actual appearance
of the turbulence, the small disturbancesmust, however, be considerably.,
amplified; and that is-the case only when the Reynolds nuuiberis somewhat
greater (compare reference 22). The agreement is therefore complete.

The value ecrit = 0.2!j0 obtained by Taylor and Goldstein is far

from the ~ values denoting the boundary between lsminar and turbulent
flow according to Richardson’s measurements. It is true that Taylor’s
and Goldstein’s stability investigationshad been based upon different
velocity profiles than realized here in experiment. The presented
theory, ori.theother hand, whose assumptions are rather closely
satisfied by the measurements, indicates a very satisfactory agreement
with the experiment, according to figure 15.

Translated by J. Vanier
National Advisory Committee
for Aeronautics
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Figure 1.- The investigatedlaminarflowwithstratificationofdensities.
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